Optimizing Event-based Neural Networks on Digital Neuromorphic Architecture: A Comprehensive Design Space Exploration

Yingfu Xu¹, Kevin Shidqi¹, Gert-Jan van Schaik¹, Refik Bilgic², Alexandra Dobrita¹, Roy Meijer¹, Prithvish Nembhani¹, Cina Arjmand¹, Pietro Martinello¹, Anteneh Gebregiorgis³, Said Hamdioui³, Paul Detterer¹, Stefano Traferro¹, Mario Konijnenburg¹, Kanishkan Vadivel¹, Manolis Sifalakis¹, **<u>Guangzhi Tang⁴</u>**, Amirreza Yousefzadeh⁵

¹ imec the Netherlands, ² imec, ³ Delft University of Technology, ⁴ Maastricht University, ⁵ University of Twente,

Event-based Vision and Optical Flow

Spiking Neural Network and Event-based ANN

- **Event-based Optical Flow Prediction**: Estimation optical flow using event camera
- Fair Comparison of ANN and SNN: Similar architecture, sparsity, deploy hardware
- Hardware-aware Training: Novel activation sparsity finetuning for ANN and SNN
- **State-of-the-art Accuracy**: Maintain low prediction error with >90% activation sparsity

- SNN having **higher Pixel-wise sparsity** than ANN
- More events in pixels increase **data reuse** chances
- Result in lower energy and latency on hardware

[1] Tang, Guangzhi, et al. "SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges." Frontiers in Neuroscience, 2023. [2] Xu, Yingfu, et al. "Optimizing event-based neural networks on digital neuromorphic architecture: a comprehensive design space exploration." Frontiers in Neuroscience, 2024. [3] Xu, Yingfu, et al. "Event-based Optical Flow on Neuromorphic Processor: ANN vs. SNN Comparison based on Activation Sparsification." arXiv preprint, 2024.

Contact: Guangzhi Tang **Assistant Professor** DACS, Maastricht University We are actively hiring Postdoc or PhD positions!

This work was partially funded by research and innovation projects **REBECCA** (KDT JU under grant agreement No. 101097224), **NeuroKIT2E** (KDT JU under grant agreement No. 101112268)

Explore Activation Sparsity in Recurrent LLMs for Energy-Efficient Neuromoprhic Computing

Ivan Knunyants^{1,2}, Maryam Tavakol², Manolis Sifalakis¹, Yingfu Xu¹, Amirreza Yousefzadeh³, Guangzhi Tang⁴,

¹ imec the Netherlands, ² Delft University of Technology, ³ University of Twente , ⁴ Maastricht University

Energy Efficient Neuromorphic Computing

Large Language Models (LLMs) **Cost more than 100000 W (>500 GPUs)**

Neuromorphic Computing develops **Energy Efficient Al systems** inspired by the key computing paradigms of the brain

- Neuromorphic Chip mimics the brain's computing paradigm
- Process activation event-by-event to exploit sparsity

Activation Sparsity in LLMs

Theoretical token-wise activation sparsity in LLMs (ICML 2023)

- Activation sparsity exists in LLMs and the natural \bullet sparsity ReLU activation in MLP block is >95%

Threshold initialization algorithm. Level 1: iterate over LLM blocks. Level 2: in each block iterate over thresholding functions following the predefined order. Level 3: search the optimal threshold for each thresholding function by performing R-LLM inference.

	Time-Mix		Channel-Mix		Overall	
	Sparse	Dense	Sparse	Dense	Sparse	Dense
Computation	5.0	11.9	9.3	15.5	14.3	27.4
Memory	7.4	17.6	13.9	23.1	21.3	40.7
Total	12.4	29.5	23.2	38.6	35.6	68.1

	Time-Mix		Channel-Mix		Overall	
	Sparse	Dense	Sparse	Dense	Sparse	Dense
Computation	0.9	2.1	1.7	2.8	2.6	4.9
Memory	1.3	3.1	2.5	4.1	3.8	7.2
Total	2.2	5.2	4.2	6.9	6.4	12.1

Neural Networks on Digital Neuromorphic **Architecture** for a detailed overview on the SENECA neuromorphic processor

Benchmarking with Baseline RWKV using MiniPile Dataset

Extension to self-attention OPT on Zero-shot Benchmarks

Model size	Model type	Sparsity (%)	Test loss	Loss Increase (%)
430M	Baseline [3]	28.01	2.2377	
	Our approach	57.03	2.3377	4.47
1.5B	Baseline [3]	28.38	2.0222	
	Our approach	59.99	2.1111	4.40
3B	Baseline [3]	28.65	1.9297	
	Our approach	63.16	2.0510	6.29

Double activation sparsity with minimal loss increase on RWKV LLMs

Model	Activation sparsity (%)			Overall sparsity	AVG Benchmark
	QKV	UpProj	DownProj		Accuracy (%)
2.7B Base [17]	0	0	96	48	60.3
2.7B Training-based [14]	50	35	96	71.125	58.5
$2.7B \text{ Our (loss_inc} = 1.0003)$	46	35	97	70.125	59.8
$2.7B \text{ Our (loss_inc} = 1.0004)$	48	38	97	71.25	58.6
$2.7B \text{ Our (loss_inc} = 1.0005)$	50	39	97	72.125	58.3

Our training-free approach can also extend to self-attention LLM

Our method achieves same performance as the training method (ICLR 2024) while 30x faster than its training on GPUs using large dataset

Contact: Guangzhi Tang **Assistant Professor** DACS, Maastricht University We are actively hiring Postdoc or **PhD positions!**

This work was partially funded by research and innovation projects **REBECCA** (KDT JU under grant agreement No. 101097224), **NeuroKIT2E** (KDT JU under grant agreement No. 101112268)