Optimizing Event-based Neural Networks on Digital Neuromorphic Architecture:
A Comprehensive Design Space Exploration
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Reduce state memory cost Reduce layer latency Loihi  >50x  Reduce neural state memory movements

X*Y*C to min(X, Y)*C*4 Full layer to First event TrueNorth  >9x >3x  >100x .

*5-layer CNN: (8¢3k2p)-(16c3k2p)-(32¢c3k2p)-128-class

Combine with Convolution for events in same pixel

Event-based Vision and Optical Flow Spiking Neural Network and Event-based ANN
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* Event-based Optical Flow Prediction: Estimation optical flow using event camera 0 1 Z 3 4 > 6 /

Layer ID
* Fair Comparison of ANN and SNN: Similar architecture, sparsity, deploy hardware

* Hardware-aware Training: Novel activation sparsity finetuning for ANN and SNN
 State-of-the-art Accuracy: Maintain low prediction error with >90% activation sparsity

* SNN having higher Pixel-wise sparsity than ANN
* More events in pixels increase data reuse chances
* Resultin lower energy and latency on hardware
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Energy Efficient Neuromorphic Computing Activation Sparsity in LLMs

Large Language Models (LLMs) Neuromorphic Computing develops Theoretical token-wise activation sparsity in LLMs (cuL 2023
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Memory of tokens stored in growing blocks Implicit recurrent memory Comparable performance with self-attention LLM

Training-free Threshold Initialization for Sparse Recurrent LLM Neuromorphic Hardware Simulation Study

Average Energy Cost (u/) per token

—— Level | Level 2 Level 3 Time-Mix Channel-Mix Overall
! Sparse | Dense | Sparse | Dense | Sparse | Dense
Block J Threshold Computation | 5.0 1.9 03 155 | 143 | 274
Threshold [Aggregate activationsH Calculate thresholds ] Memory 7.4 17.6 13.9 23.1 21.3 40.7
Total 12.4 29.5 23.2 38.6 35.6 68.1
4 K_/
[Linear | } | Baseloss | Average Latency (ms) per token
Time-Mix Channel-Mix Overall
i Sparse | Dense | Sparse | Dense | Sparse | Dense
TR 0% < loss.inc Computation | 0.9 2.1 1.7 2.8 2.6 4.9
| Memory 1.3 3.1 2.5 4.1 3.8 7.2
\ Total 2.2 5.2 4.2 6.9 6.4 12.1
Threshold
Perform realistic neuromorphic hardware simulation
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study on the SENECA neuromorphic processor using
real hardware measurements

You can check Poster 12: Optimizing Event-based
Neural Networks on Digital Neuromorphic

Threshold initialization algorithm. Level 1: iterate over LLM blocks. Level 2: in each block Architecture for a detailed overview on the
iterate over thresholding functions following the predefined order. Level 3: search the optimal SENECA neuromorphic processor
threshold for each thresholding function by performing R-LLM inference.

Benchmarking with Baseline RWKV using MiniPile Dataset Extension to self-attention OPT on Zero-shot Benchmarks

Model size | Model type Sparsity (%) | Test loss | Loss Increase (%) Model Activation sparsity (%) | Overall sparsity | AVG Benchmark
430M Baseline [3] 28.01 22377 BT QIgV Upgf"l D°W9‘16P1‘0J = Accuggcg’ (%)
. dScC .
Our approach 27.03 2.3377 447 2.7B Training-based [14] 50 35 96 71.125 58.5
1.5B Baseline [3] 28.38 2.0222 2.7B Our (loss_inc = 1.0003) | 46 35 97 70.125 59.8
Our approach 59.99 2.1111 4.40 2.7B Our (loss_inc = 1.0004) 48 38 97 71.25 58.6
3B Baseline [3] 7% 65 1.0207 2.7B Our (loss_inc = 1.0005) | 50 39 97 72.125 58.3
Our approach 63.16 2.0510 6.29 e Ourtraining-free approach can also extend to self-attention LLM

* Our method achieves same performance as the training method (cLr2024)

Double activation sparsity with minimal loss increase on RWKV LLMs . . - F .
while 30x faster than its training on GPUs using large dataset
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