Event-based Optical Flow on Neuromorphic Processor with Efficient Event-driven Depth First Convolution

Yingfu Xu¹, <u>Guangzhi Tang</u>², Amirreza Yousefzadeh³, Guido C.H.E. de Croon⁴, Manolis Sifalakis¹

¹ imec the Netherlands, ² Maastricht University, ³ University of Twente, ⁴ Delft University of Technology

FireNet with Sparse ANN or SNN for Event-based Optical Flow Prediction [3]

- Event-based Optical Flow Prediction: Estimation optical flow using event camera
- Fair Comparison of ANN and SNN: Similar architecture, sparsity, deploy hardware
- Hardware-aware Training: Novel activation sparsity finetuning for ANN and SNN

- Deploy SNN on 8 interconnected SENECA cores
- Layers operate in pipeline fashion without waiting

Fair Comparisons of Sparse ANN and SNN on Neuromorphic Optical Flow

Network		outdoor_day1		indoor_flying1		indoor_flying2		indoor_flying3		Average	
		% _{Out.}	AEE	% _{Out.}	AEE	% _{Out.}	AEE	% _{Out.}	AEE	% _{Out.}	Dens.(%)
EV-FlowNet(GRU)Hagenaars et al. (2021)	1.69	12.50	2.16	21.51	3.90	40.72	3.00	29.60	2.94 2	29.35	-
RNN-EV-FlowNet	1.69	12.96	2.02	18.74	3.84	38.17	2.97	27.91	2.88	27.32	16.90
RNN-EV-FlowNet-S (smaller λ_s)	1.92	17.34	2.06	18.83	3.56	37.02	2.88	28.94	2.79 2	27.76	5.35
RNN-EV-FlowNet-S (bigger λ_s)	1.73	12.20	2.03	19.03	3.83	39.70	3.02	30.58	2.90 2	28.71	4.78
LIF-EV-FlowNet	1.99	15.99	2.47	26.79	4.94	50.51	3.91	39.59	3.68	37.47	9.46
LIF-EV-FlowNet-S (smaller λ_s)	2.01	16.88	2.69	32.00	4.77	51.29	3.84	41.85	3.66 3	39.90	5.81
LIF-EV-FlowNet-S (bigger λ_s)	1.88	16.36	2.76	33.63	4.96	52.65	4.06	44.76	3.80 4	41.68	3.93
FireNet(GRU)Hagenaars et al. (2021)	2.04	20.93	3.35	42.50	5.71	61.03	4.68	53.42	4.41 4	49.92	-
RNN-FireNet	1.94	17.80	3.11	38.79	5.45	57.31	4.47	49.59	4.194	46.22	34.03
RNN-FireNet-S* (no threshold regularizer)	1.67	12.88	2.79	32.70	5.02	51.99	4.05	43.69	3.80 4	40.54	16.57
RNN-FireNet-S	2.16	22.04	3.16	40.09	5.14	55.96	4.24	48.76	4.05 4	46.25	5.92
RNN-FireNet-S-FT	1.97	18.31	3.24	39.23	5.48	57.00	4.45	49.02	4.22 4	46.09	4.52
LIF-FireNet	1.96	15.82	3.32	41.37	5.99	62.24	4.98	54.63	4.584	49.94	19.54
LIF-FireNet-S	2.15	21.06	3.14	39.17	5 .59	57.94	4.63	51.19	4.31 4	47.36	4.53

Where does SNN work better than ANN?

- SNN having higher Pixel-wise sparsity than ANN
- More events in pixels increase data reuse chances
- Result in lower energy and latency on hardware

[1] Tang, Guangzhi, et al. "SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges." Frontiers in Neuroscience, 2023.
[2] Xu, Yingfu, et al. "Optimizing event-based neural networks on digital neuromorphic architecture: a comprehensive design space exploration." Frontiers in Neuroscience, 2024.
[3] Xu, Yingfu, et al. "Event-based Optical Flow on Neuromorphic Processor: ANN vs. SNN Comparison based on Activation Sparsification." arXiv preprint, 2024.

This work was partially funded by research and innovation projects **REBECCA** (KDT JU under grant agreement No. 101097224), **NeuroKIT2E** (KDT JU under grant agreement No. 101112268)

TRIP: <u>Trainable</u> <u>Region-of-Interest</u> <u>Prediction</u> for Hardware-Efficient Neuromorphic Processing on Event-based Vision

Cina Arjmand¹, Yingfu Xu¹, Kevin Shidqi¹, Alexandra F. Dobrita¹, Kanishkan Vadivel¹, Paul Detterer¹, Manolis Sifalakis¹, Amirreza Yousefzadeh², <u>Guangzhi Tang³</u>

¹ imec the Netherlands, ² University of Twente, ³ Maastricht University

Neuromorphic Processing on Event-based Vision

Neuromorphic Processor

Event-based Camera

Advantages

Exploit input sparsityLow latency and energy

Hard Attention for Efficient Image Classification

Advantage: Process high resolution image without quadratic

Event-driven Convolution Input Layer Kernel Output Layer

Challenge 1: Memory CostLarge neural state memory

High area cost

Challenge 2: Compute CostLarge number of eventsHigh computation cost

complexity to input scale

Challenge 1: Overhead for ROI Costly ROI prediction and generation for complex scenes **Challenge 2: Training Complexity** Hard to perform end-to-end training with simple architecture

TRIP – Hard Attention Framework for Event-based Vision on Event-driven Neuromorphic Processor [1]

Experiments on the **DVSGesture** Dataset

80.6M

1.75M

113.3M

Experiments on the **Synthetic NMNIST** Dataset

°, 🎓

Digit 7

Digit 0

Digit 3

Architecture	Param	FLOPs	Accuracy [%]
			(mean \pm std)
Baseline (16x16)	0.31M	6.0M	71.8 ± 2.3
Baseline (32x32)	0.67M	24.4M	93.0 ± 0.6
Baseline (64x64)	0.67M	57.4M	96.2 ± 0.9
TRIP (16x16)	0.30M	16.0M	95.4 ± 0.4
TRIP (32x32)	0.65M	28.0M	96.1 ± 0.3

TRIP achieves **higher accuracy** compared to CNN with same number of layers and parameters

Deploy TRIP on the SENECA Neuromorphic Processor

97.8

97.6

98.6

 97.3 ± 0.4

 97.6 ± 0.5

4.8M

0.22M

0.46M

					Single Timebin			Multiple Timebins			
Hardware	Solutions	Technology	Core	Area	Latency	E_{inf}	Accuracy	Latency	E_{inf}	Accuracy	
			[#]	$[mm^2]$	[ms]	[uJ]	[%]	[ms]	[uJ]	[%]	
Loihi [26]	Spiking CNN [3]	Intel 14 nm	>20	>8.20	11	_	89.6	—	_	_	
Loihi [26]	Spiking CNN [14]	Intel 14 nm	59	24.19	—	_	—	22.0	2731	96.2	
TrueNorth [27]	Spiking CNN [11]	Samsung 28 nm	3838	383.8	_	_	91.8	104.6	18702	94.6	
SENECA [10]	Event-based CNN	GF FDX 22 nm	7	3.29	—	—	—	78.9	1069.2	97.3	
SENECA [10]	TRIP	GF FDX 22 nm	9	4.23	2.7	35.86	91.1	25.8	430.32	98.3	

End-to-end deployment on the SENECA neuromorphic processor

Improve latency and reduce energy cost using less hardware area

[1] Arjmand, Cina, et al. "TRIP: Trainable Region-of-Interest Prediction for Hardware-Efficient Neuromorphic Processing on Event-based Vision." International Conference on Neuromorphic Systems, 2024.

CNN+EGRU [13]

ConvLIAF [22]

TRIP (Ours)

 128×128

 $16 \times 16 + 12 \times 12$

 32×32

Chipsji

This work was partially funded by research and innovation projects **REBECCA** (KDT JU under grant agreement No. 101097224), **NeuroKIT2E** (KDT JU under grant agreement No. 101112268), and **NimbleAI** (Horizon EU under grant agreement 101070679)