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SENECA Neuromorphic Architecture [1] 

Event-driven Depth First Convolution [2] Spike-Grouping for Reducing Memory Access

FireNet with Sparse ANN or SNN for Event-based Optical Flow Prediction [3]

Fair Comparisons of Sparse ANN and SNN on Neuromorphic Optical Flow

SNN FireNet Deploy on SENECA
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Problem 1: State Memory

• Store all states on-chip

• Unbearable for high-res

Problem 2: Layer Latency

• Event generate after step sync

• Additional latency per layer

❑Partial sums 

❑Wait for complete

• Scalable and flexible architecture design
• Programable controller and hierarchical memory

Reduce state memory cost
X*Y*C to min(X, Y)*C*4 

Reduce layer latency
Full layer to First event 

Improve vs Energy Latency Area
Loihi >50x >3x >3x

TrueNorth >9x >3x >100x
* 5-layer CNN: (8c3k2p)-(16c3k2p)-(32c3k2p)-128-class

• Reduce neural state memory movements
• Combine with Convolution for events in same pixel

• SNN having higher Pixel-wise sparsity than ANN
• More events in pixels increase data reuse chances
• Result in lower energy and latency on hardware

Where does SNN work better than ANN?

• Deploy SNN on 8 interconnected SENECA cores
• Layers operate in pipeline fashion without waiting

• Event-based Optical Flow Prediction: Estimation optical flow using event camera
• Fair Comparison of ANN and SNN: Similar architecture, sparsity, deploy hardware
• Hardware-aware Training: Novel activation sparsity finetuning for ANN and SNN
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Neuromorphic Processing on Event-based Vision Hard Attention for Efficient Image Classification
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Event-based Camera Neuromorphic Processor

Sparse 
Events Advantages

• Exploit input sparsity
• Low latency and energy

Challenge 1: Memory Cost
• Large neural state memory

• High area cost

Challenge 2: Compute Cost
• Large number of events
• High computation cost
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Advantage: Process high resolution image without quadratic 
complexity to input scale

Challenge 1: Overhead for ROI
Costly ROI prediction and 

generation for complex scenes

Challenge 2: Training Complexity
Hard to perform end-to-end 

training with simple architecture

TRIP – Hard Attention Framework for Event-based Vision on Event-driven Neuromorphic Processor [1]
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• End-to-end training
• Fixed computation cost

Experiments on the DVSGesture Dataset
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Experiments on the Synthetic NMNIST Dataset
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TRIP achieves higher accuracy compared to CNN 
with same number of layers and parameters
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Deploy TRIP on the SENECA Neuromorphic Processor

Remove causal processing in TRIP

• End-to-end deployment on the SENECA neuromorphic processor
• Improve latency and reduce energy cost using less hardware area
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